Options
Enhancing Ventilation Performance of A Solar Chimney with A Stepped Absorber Surface
Journal
Lecture Notes in Mechanical Engineering
Modern Mechanics and Applications
ISSN
2195-4356
2195-4364
Date Issued
2021
Author(s)
Nguyễn Quốc Ý
DOI
10.1007/978-981-16-3239-6_49
Abstract
"Maximizing the utilization of renewable energy is one of the important points for designing sustainable buildings. Among the natural energy resources applied in buildings, solar radiation can be harnessed with solar chimneys. These devices absorb solar radiation for heating air in an enclosed channel. The thermal effects associated with the heated air can induce an air flow which can be used for ventilation, heating, or cooling of the connected buildings. This method can help to reduce the energy consumption of a building significantly.
As solar chimneys have been attracting a number of studies in the literature, research interests in this topic have been focusing on enhancing the ventilation performance of typical solar chimneys by testing different shapes of the absorber surface. In this study, a novel type of a vertical solar chimney with a stepped absorber surface, unlike a straight one in typical chimneys, was studied with a numerical model. The air flow and heat transfer inside the air channel were computed with a CFD (Computational Fluid Dynamics) model. Performance of the chimney in terms of the induced air flow rate and thermal efficiency through the chimney, and the Nusselt number inside the air channel was investigated under different dimensions of the step and at different heat fluxes. The results show that the step strongly disturbed the distribution of the Nusselt number on the absorber surface and enhanced the induced air flow rate up to 11%, the air temperature rise through the chimney, and the thermal efficiency of the air flow up to 225% compared to those of a typical solar chimney. Therefore, the effectiveness of the proposed stepped absorber surface has been seen."
As solar chimneys have been attracting a number of studies in the literature, research interests in this topic have been focusing on enhancing the ventilation performance of typical solar chimneys by testing different shapes of the absorber surface. In this study, a novel type of a vertical solar chimney with a stepped absorber surface, unlike a straight one in typical chimneys, was studied with a numerical model. The air flow and heat transfer inside the air channel were computed with a CFD (Computational Fluid Dynamics) model. Performance of the chimney in terms of the induced air flow rate and thermal efficiency through the chimney, and the Nusselt number inside the air channel was investigated under different dimensions of the step and at different heat fluxes. The results show that the step strongly disturbed the distribution of the Nusselt number on the absorber surface and enhanced the induced air flow rate up to 11%, the air temperature rise through the chimney, and the thermal efficiency of the air flow up to 225% compared to those of a typical solar chimney. Therefore, the effectiveness of the proposed stepped absorber surface has been seen."
File(s)