Options
Highly Effective Degradation of Nitrophenols by Biometal Nanoparticles Synthesized using Caulis Spatholobi Extract
Journal
Journal of Nanomaterials
ISSN
1687-4129
1687-4110
Date Issued
2021
Author(s)
Van Thuan Le
Van-Cuong Nguyen
Xuan-Thang Cao
Tan Phat Chau
Thi Dung Nguyen
Thi Lan-Huong Nguyen
Van-Dat Doan
Editor(s)
Hassan Karimi-Maleh
DOI
10.1155/2021/6696995
Abstract
The green biosynthesis of metal nanoparticles (MNPs) has been proved to have many advantages over other methods due to its simplicity, large-scale production, ecofriendly approach, and high catalytic efficiency. This work describes a single-step technique for green synthesis of colloidal silver (AgNPs) and gold nanoparticles (AuNPs) using the extract from Caulis Spatholobi stems. Ultraviolet-visible spectroscopy measurements were used to optimize the main synthesis factors, including metal ion concentration, reaction time, and reaction temperature via surface plasmon resonance phenomenon. Fourier-transform infrared spectroscopy showed the possible functional groups responsible for reducing and stabilizing the synthesized MNPs. The powder X-ray diffraction and selected area electron diffraction analysis confirmed the crystalline nature of the biosynthesized MNPs. High-resolution transmission electron microscopy revealed the spherical shape of MNPs with an average size of 10-20 nm. The obtained MNPs also exhibited the enhanced catalytic activity in the reduction of 2-nitrophenol and 3-nitrophenol.
File(s)